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Abstract—State-of-the-art Document Layout Analysis methods
rely on graphical appearance features in order to detect and
classify the different layout regions present in a scanned text
image. In many cases, however, performing this task using only
graphical information is problematic or impossible. Only by
actually reading some text in the boundaries of the problematic
regions it becomes possible to reliably detect and separate these
regions. In these situations, textual, content-based features would
be required, but since transcription is usually performed after
layout analysis, a vicious circle arises. In this work, we circumvent
this deadlock by making use of the recently introduced concept of
Probabilistic Index Map. We use the word relevance probabilities
provided by this map to calculate relevant text content based
features at the pixel level. We assess the impact of these new
features on a historical document complex paragraph classifica-
tion task. The experiments are performed using both a classical
Hidden Markov Model approach and Deep Neural Networks.
The obtained results are encouraging and showcase the positive
impact text content based features will have on the Document
Layout Analysis research field.

Index Terms—Document Layout Analysis, Text Content Based
Features, Hidden Markov Models, Deep Neural Networks

I. INTRODUCTION

Higher Order Text Region Classification (HOTRC), is the
Document Layout Analysis (DLA) task that tackles the de-
tection and classification of large structural regions present
in a page. Detection of these larger structural regions, like
paragraphs or side-notes, is an important in order to perform
other DLA tasks. Many advances on this task have been
performed over the years [1], [2], specially with the advent
of Deep Neural Networks [3], [4]. All of these state-of-the-art
methods depend on differences in the graphical-appearance of
the text regions present in order to detect and classify them.

However, there are layout analysis problems where
graphical-appearance or features derived from it will not
suffice. In many cases this happens because the considered
document does not exhibit any clear graphical clue to dis-
tinguish between regions. Sometimes, there might be some
graphical hints but they are difficult to detect and/or plainly
consistent, specially in large collections. Other times the type
of a region can only be told if the graphical information of
the following page is considered. In Fig. 1 we see a sample
page of the corpus used in this research paper that exemplifies
these issues. However, there are images which with only the
graphic features could be segmented. The page contains three
text blocks: the second one corresponds to a complete record,
while the first one is a continuation of a record that started

in the preceding page and the third is a record that continues
in the next page. There is no graphical gap between adjacent
blocks, the capital letter that marks the beginning of the second
block is not present at the beginning of the third. Furthermore,
there are no graphical clues to distinguish whether the first and
the third blocks and full records or they are incomplete records
which start or continue in the adjacent pages.
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Fig. 1. Sample Chancery corpus (Sec. II) page that exemplifies the issues of
depending solely on graphical features to distinguish between 3 regions.

To tackle this situation, here we study the (additional) use of
text content based features to improve the accuracy of different
DLA models. Since traditionally DLA has been considered a
front-end step that must be performed previously to any sort
of text recognition, the use of text content based features in
DLA generates an obvious vicious circle.

In order to circumvent this deadlock in a realistic manner,
we rely on the recently introduced concept of Probabilistic
Index (PrIx) Map, which was developed following concepts
and ideas related with word-segmentation-free Key Word
Spotting [5]–[9]. A PrIx nicely deals with the intrinsic word
level uncertainty generally exhibited by a handwritten text
image. It can be understood as a “heat-map” representation
of the image which highlights positions of words which were
likely written in the original manuscript.

In this paper we study how to adequately use PrIx’s to derive
text content based features useful for DLA. We review the
impact of using these features in two different approaches:
Hidden Markov Model (HMMs) and Deep Neural Networks
(DNNs) when tackling a complex HOTRC task.



Since the error in CER is considerably high for this corpus
makes using layout approximations together with transcribed
text [10] is not feasible due to the high number of pseu-
dowords, making these techniques not worthwhile on the
context of the historical document.

The rest of the article is divided as follows. In Section II
we describe the Corpus and the task that must be performed.
Next, in Section III a brief overview of the PrIx maps and the
necessary adaptations required to use them, both in HMMs
and DNNs. Later, in Section IV we review the experimental
set-up and evaluation measures, and provide empirical results.
Finally in Section V, we provide our conclusions and comment
on the future work that is derived from this paper.

II. CORPUS

The complete corpus named Chancery encompasses around
80 000 images of medieval registers produced by the French
Royal Chancery (Archives Nationales and Bibliothèque na-
tionale de France), in the period spanning from 1302 to 1483.
They contain charters given by the king of France. This large
and iconic collection bears witness to the rationalization of
late medieval administration. It is considered a key source to
help our understanding of medieval Europe and the rise of
centralized nation state. This rise appearing throughout the
continent as a consequence of the long lasting wars between
France and England.

Fig. 2. Example of pages of the Chancery corpus

The sheer size of this corpus has prevented scholars to study
it as exhaustively as it deserves. To overcome this situation, a
user-friendly search interface based on PrIx1 was developed in
previous projects to access the contents of this key resource.
This is helping to increase the knowledge about medieval his-
tory and to promote ongoing research in comparative studies
on state management and administration.

This corpus is functionally divided into content units called
“Acts”. These Acts mostly record royal decisions with perpet-
ual validity: creation and privileges of different organizational
bodies, confirmations of previous acts, donations, pardons.
Confirmations are numerous (45% under king Charles IV)
and include the complete text of the previous act, preventing
a classification of parts of acts based solely on the textual
content. Acts may include up to seven layers of embedding
and up to 17 different acts. Acts can be short, with several
Acts in a page, or large and distributed across several pages.

1Available at http://himanis.huma-num.fr/himanis/

Thus, when searching for information about a specific topic it
is important for researchers to understand where an Act starts
and finishes.

Hence we can consider the pages of the collection to
be composed of different types of Acts or Act fragments,
depending where they start and end. A Complete Act is one
that starts and ends in the same page. A Finishing Act is one
that started in another page but ends in the current, while a
Starting Act is one that starts in the current page but doesn’t
end in it. Finally, a Medium Act is one that neither ends
nor starts on this page. The task considered in the present
work is only to detect where an Act ends. Although this
does not strictly require the above classification, it should be
implicitly taken into account by any method, and it does help
understanding the complexity of the task.

Furthermore, this corpus presents instances of inclusion of
Acts within Acts (called “vidimus” or “inspeximus”) difficult-
ing a classification of parts of acts based solely on the textual
content

In our experiments we considered a subset of the whole
Chancery collection consisting of 739 page images from the
range of volumes. from JJ038 to JJ091. Some of the pages
were hand selected to ensure the contents were representative
of the whole collection, but most correspond to the full
contents of volumes. Details of this dataset can be found in
Table I.

TABLE I
TYPE OF ACTS STATISTICS FOUND IN THE CHANCERY CORPUS SUBSET

USED DURING IN THE EXPERIMENTATION.

Number of: Total
Pages 739
Complete Act (CA) 438
Starting Act (SA) 365
Medium Act (MA) 178
Finishing Act (FA) 345

This dataset was divided into training, validation and test
partitions. The training partition consists of 176 page images
including 56 selected by hand to ensure the training set is
sufficiently representative, plus 20 randomly selected pages of
each volume. For validation we randomly selected 16 images
from each volume, for a total of 96 pages. Finally, the test
partition consisted of the remaining 467 pages.

III. HIDDEN MARKOV MODELLING

Our first approach to act finalization detection was based
on HMMs and “vertical layout models”. It is an adaptation of
the successful statistical framework used for automatic speech
and handwritten text recognition, which was already applied
successfully to other DLA tasks [2], [11], [12].

To apply this method we must model all Layout Regions
(LRs) expected in a page and define the Layout Elements (LEs)
they are composed of. Furthermore, as we want to use the text
information extracted from PrIx maps, we should define LEs
that have some correlation with their expected text content.

The LRs considered mainly correspond to the different
types of Acts described in the Sec. II: CA, SA, MA, FA. But,



our HMM approach obtains the best performance when all
possible elements in a page are modelled. Thus, we will also
model the upper part of the page UP, end of a page EP and
transition spaces between Acts AT.

These LRs allow us to represent a page as a sequence of
region labels. For example, a page with a Finishing Act (FA),
two Complete Acts (CA) and one Starting Act (SA) can be
represented by the sequence:

UP FA AT CA AT CA AT SA EP

To model the different LRs, adequate LEs must be defined.
We consider an Act to be composed of three sections: Initial
I, Middle M and a Final F. By vertically stacking these
elements, all the above types of acts can be easily modelled.
For example, a Complete Act (CA) may correspond to two
LE combinations: I M F, or I F, depending on whether the
Act is or is not large enough to have a Middle section.

The above modelling specifications are summarized in the
following LR dictionary, where some LEs are named exactly
as the corresponding LRs (EP, UP, AT) :

LR LEs
UP : UP
AT : AT
EP : EP
CA : I F | I M F
SA : I | I M
MA : M
FA : F | M F

For each LE, an optical HMM model is trained. These mod-
els take as input a vertical sequence of graphical features [2]
(plus the text content based features introduced in Sec. VI).
Using the composition rules defined above, LR HMMs are
built from the LE models. Lastly, how the different LRs can
be stacked to form a correct page will be governed by a prior
Vertical Layout Model which we will introduce in Sec. V.

IV. DEEP NEURAL NETWORK MODELLING

Current state-of-the-art methods for DLA in historical doc-
uments are based on deep learning approaches. For document
segmentation, CNN-based pixel-wise region predictors like
dhSegment [3] and P2PaLA [4] are achieving promising
results. In case of text line detection, ARU-net [13] uses
residual blocks increasing the representation power and an
attention model to focus at different positions and scales.

However these approaches fail to provide enough accuracy
and/or robustness for tasks, like the one here considered,
where graphical hints do not help distinguishing contiguous
text blocks and textual hints are needed to allow reliable block
separation. Here we use a DNN architecture different from [3],
[4], [13] and follow some ideas of the multimodal perspective
adopted in [14] to take into account textual features.

We opted to use residual convolutional blocks [15], which
allows us to use a higher number of convolutional layers while
avoiding the vanishing gradients issue. The blocks allow the
network to find the best way to extract the graphical features.

This increases the representative power, as compared to a
simple convolutional layer. Every block is composed of 3
convolutional layers followed by batch normalization [16] to
normalize the inputs to the non-linear activation function. We
use ReLU activation functions. At the end of every block, the
output of the activation functions are fed to a Max Pooling
layer with non-overlapping kernels of 2 × 1. This is done
to reduce the dimensionality only in the horizontal axis. The
number of blocks depends on the size of the input image since
this is where the reduction of the dimension is carried out. For
this task, we decided to re-size the images to 1024×768, thus a
total of 4 residual convolutional blocks were used, where each
block had 8, 16, 24, 32 filters respectively. Every convolution
uses 3 × 3 filters and 1 stride. As a result we end up with a
tensor dimension of 1024× 48× 32.

Next, LSTM layers [17] are used on the output of the last
block to capture long-term dependencies across the horizontal
axis. We are able to perform this by applying a reshape
operation prior to the LSTM layers. The operation consisting
in concatenating the channel and the horizontal dimensions,
always preserving the vertical dimension. This results in a
tensor dimension of 1024×1536. We concatenated 3 BiLSTM
layers of 16 hidden units every one, ending up with a tensor
dimension of 1024× 32.

Finally, we use a linear layer to classify each input row
using as input the features obtained from the BiLSTM layers.
This linear layer is used to provide the probability for each
of the considered region types. The final result is a tensor
of dimensions 1024× 6; that is, for each normalized vertical
position (for 1 to 1024), we have an estimate of the posterior
probability for each of the 6 LR classes.

Note that every reduction of the tensor is applied to the
horizontal axis, keeping intact the vertical axis. We do so in
order to be able to obtain the class probabilities for each row
of pixels. To do so, a horizontal softmax is applied. The whole
architecture is illustrated in Fig. 3. We can see that the image
has 3 more channels. These channels come from the textual
characteristics, explained in Sec. VI-B.

3+3 Channel 
Image

4 ConvBlocks 3 BiLSTM Layers SoftmaxLinear 
layer

Fig. 3. Illustration of the network design. 6 channel image is created the
concatenation of the input image in RGB channels with the 3 images in
grey scale created with textual information. The attention variables that are
multiplying the textual information are not shown in the figure.

V. USE OF PRIOR INFORMATION

A. Vertical Layout Model in the HMM Approach
In this case we use a finite-state model to govern how

the different LRs can be stacked vertically to create a well



formed page. This model is trained with the label sequence
descriptions of the training pages. The model that holds this
prior information is named Vertical Layout Model (VLM) and
it plays the same role as the Language Model in automatic
speech or handwritten text recognition.

The VLM is implemented as a finite state automata rep-
resentation of a n-gram model. In order to test the HMM
approach when no prior information is used, we also use a
zero-gram VLM; i.e., a single-state finite state model with
equal probabilities for all the transitions.

B. DNN Output Post-processing Based on Prior Knowledge

As the neural network obtains probabilities for all classes in
each row, some inconsistencies tend to appear. For instance,
sometimes micro regions of different region types appear in
the middle of a large block of another region type. Although
the network provides probabilities for all region classes, we
are only interested in class FA, which is the class that denoting
the end of an Act.

In order to mitigate lack of homogeneity in a vertical
sequence of labels, we used a Random Forest Classifier to
automatically detect inconsistencies in the size (height) of
subsequences of class FA. To train the classifier to detect
these inconsistencies we use the hypotheses produced by the
network for the input images of the training set, along with the
reference output provided for each image. For test images, the
network output subsequences labelled with the FA class (which
we consider must be at least 10 rows long) are detected. Then
a greedy alignment between these subsequencess and their
positions in the ground truth (GT) is performed. If the detected
subsequences are also labelled with the FA class in the GT we
mark them as correct otherwise as incorrect. Finally, the input
to train the classifier consists in the size of each subsequence
plus a bit indicating whether it is a correct subsequence or not.
Thus, the classifier is able to learn which subsequence sizes
are correct, and then helps filter out inconsistencies.

VI. PROBABILISTIC INDEXING AND TEXT FEATURES

Text based features are derived from PrIx maps, for which
a brief overview is given in the following subsection. Then
we provide details of the adaptations required to use the PrIx
information in the two approaches considered.

A. Word Relevance Probabilities

A PrIx map provides probabilistic information of the tex-
tual contents of a page. It is obtained without the need to
perform a detailed layout analysis or text baseline detection,
nor performing any explicit handwritten text recognition on
detected text lines [5], [8], [9]. The PrIx technology used
here is fully lexicon-free; that is, no predefined set of “key
words” is needed or used. The system detects in the images any
textual element (i.e., any arbitrary character sequence) which
is sufficiently likely to be a real word [8], [9]. These elements
are called pseudo-words.

An example of a PrIx map can be seen in Fig. 4. The
map contains an entry for each (pseudo-)word kw detected in

...
<spot kw="TOUZ" s=1.000 x=878 y=72 w=65 h=47 gt=0 />
<spot kw="UNE" s=1.000 x=739 y=181 w=53 h=32 gt=1 />
<spot kw="VILLE" s=1.000 x=1289 y=181 w=66 h=32 gt=1 />
<spot kw="FEU" s=0.999 x=547 y=230 w=35 h=29 gt=1 />
<spot kw="MAISON" s=0.999 x=820 y=181 w=87 h=32 gt=1 />
...
<spot kw="MAVANT" s=0.001 x=1296 y=230 w=104 h=29 gt=0 />
<spot kw="PHILIPS" s=0.001 x=105 y=72 w=117 h=47 gt=0 />
<spot kw="SAATISFAIRE" s=0.001 x=1075 y=124 w=113 h=37 gt=0 />
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Philippes par la grace de Dieu roys de France. Savoir faisons à tous ... maison feu
Perrequin et d’autre part à la maison Estienne le Huger mouvant du chapitre de

Fig. 4. Part of the probabilistic index map of a text image region, along with
its groundtruth transcript (from the Chancery corpus Sec. II).

the image. Each entry includes the bounding box coordinates
(x,y,w,h) and the probability with which the word has
been detected s, called relevance probability.

Unfortunately these relevance probabilities can not be di-
rectly included in a feature vector, along with other graphical
features. The sheer size of the indexed (pseudo-)word vocab-
ulary makes this an impractical idea. Thus, to allow proper
combination with other graphical features, PrIx data need to
be adequately distilled.

B. Extracting Textual Features from PrIx Maps

In order to breach the gap between the PrIx Maps and the
graphical zones defined, we need vocabularies that capture
the typical word usage in each part (M, I, F) of an Act.
We searched for specific words which are frequently used
in each part to create small vocabularies that help discrim-
inating between them. These specific vocabularies can be
determined in an automatic manner by means of a Linear
Discriminant Analysis, or provided by an expert. In this case,
the repetitiveness of certain expressions used for starting and
ending the Acts allowed an expert to easily select reliable
vocabularies. However, the extraction of probabilistic indexes
has not been reduced to this vocabularies because, in future
works, these words will be selected automatically. Using these
vocabularies, we can calculate feature values that represent
the LE differentiation at row level. For each horizontal row
of pixels, we search the PrIx map for bounding boxes that
intersect this pixel row. We look at the word in each entry
and, if it belongs to the sub-vocabulary of any of the LEs
(and surpasses a minimum probability value), we add the
probability to the corresponding feature value. Fig. 5 shows a
fragment of page image along with the feature vectors obtained
from this image for the three LEs M,I,F. The bounding
boxes of some of the PrIx entries used in the calculation are
highlighted in the image.

In the HMM approach, the values of these three features
are just appended to the the pixel row graphical features [2],
thereby increasing the feature vector dimension by 3. The rest
of the process remains the same as explained in Secs. III and V.

The extraction of textual features for the DNNs approach is
essentially the same as for HMMs. However, they are normal-
ized because of DNN numeric requirements. For each pixel
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Fig. 5. Illustration of textual features for three layout elements, side-by-side
with the image portion they were calculated on. The horizontal dotted line
marks the correct division between the two Acts. The Final textual feature
(F) increases just before the end of the Act and the Initial textual feature
(I) increases at the beginning of the next Act. Words and bounding boxes of
some key PrIx entries that have caused these changes in feature values are
highlighted in the image.

row at vertical position h, let M(h), I(h), F (h) the values
of the features calculated as explained above for the LE’s
M,I,F, respectively. Then the normalized values are obtained
as M(h)/S, I(h), F (h)/S, where S =M(h) + I(h) + F (h).

These features have to be added to the DNN network graph-
ical input which, as discussed in Sec. VI-B, consists of three
RGB channels representing a size-normalized colour image of
H ×W pixels, where H = 768 and W = 1024. In order to
adequately fuse these image-like graphical features with the
textual features, we created image-like representations of the
(normalized) textual features M(h), I(h), F (h), 1 ≤ h ≤ H .
To this end, for each h, each feature value is replicated W
times. For instance, from the H-dimensional feature vector
M(h), 1 ≤ h ≤ H , a W × H “image”, XM is built
as XM (h,w)

def
=M(h), 1 ≤ w ≤ W, 1 ≤ h ≤ H . And

similarly for the other two features, resulting in three new
image-like input channels, XM , XI , XF , each representing the
corresponding textual content.

These three channels can be straightforwardly stacked along
the three graphical channels, ending up with a tensor of shape
H ×W × 6. Fig. 3 already depicted these 3+3 input channels.

Finally, three more parameters to learn are added to the
network. Each parameter is used to weight each of the three
text feature channels. The new parameters should act as a
(weighted) selector to allow the network to decide to which
channels should be paid more attention before processing goes
on through the convolutional blocks.

VII. EXPERIMENTS AND RESULTS

A. Experimental Set-up

The meta-parameters of the HMM approach were optimized
over the validation set. The resulting number of states for
each LE optical model was {I : 5,M : 15, F : 5, T : 2, B :
7, E : 2}. Similarly, the best n-gram order for the VLM was 2.
Finally, for the global Viterbi decoding, including the optical
HMMs and the VLM, the optimal values for the “grammar
scale factor” and word “insertion penalty” were 32 and −512,
respectively.

To optimize the neural network we used minibatch SGD and
Adam solver [18] with a learning rate of 0.01, and momentum
parameters β1 = 0.5 and β2 = 0.999. Classical cross-entropy
was used as the loss function. To overcome the problem of
class imbalance, weights per class were computed as wk =

1
log ε+pc

, ε ≥ 0, where pc is the prior-probability of the c

class. The network was trained for 80 epochs without using
a development partition to stop iteration when convergence
conditions are met.

In our experiments, we used a batch size of 8 images re-
dimensioned to size 1024×768. This was the maximum batch
size allowed by our hardware, a single Titan X GPU.

B. Assessment Measures

To evaluate the precision of the proposed models, and thus
the impact of using text content based features, we use the
Transkribus Baseline Evaluation Scheme (TBES). This evalu-
ation measure was first defined in 2017 as part of the READ
project [19] and was initially used in an actual competition in
the 2017 ICDAR congress [20]. The TBES was defined due
to issues found with the existing available measures [21].

As mentioned before, in the corpus GT each end of an Act
is marked with a horizontal straight line (a “baseline” in the
PAGE format used in Transkribus). The TBES measure was
used to compare the output of our systems to this groundtruth
(GT). Three main values are computed to evaluate this com-
parison. The R-value quantifies how many of the true Act
separations are detected. The P-value measures how precisely
the detected separations geometrically matches the GT. These
values provide information inspired by the well known Recall
and Precision measures used in Information Retrieval. Finally,
F-value is the harmonic mean of R-value and P-value and
summarizes the evaluation as a single measure.

It is important to note that the TBES tool has an input
tolerance parameter that specifies how close the hypothesis
and GT separation baselines must be to consider they match
In our experiments we have set this parameter to the average
interline height (128 pixels) observed in the training images.
This tolerance represents adequately the precision require-
ments of the experts.

C. Results

Table II shows F-value results for the ending Act detection
task on the Chancery dataset described in Sec. II. Results are
shown for all the combinations of HMM or DNN statistical
model, inclusion or not of prior information and usage or not
of text features.

TABLE II
COMPARISON TABLE OF THE F-VALUE RESULTS OBTAINED WITH THE

DIFFERENT COMBINATIONS OF GRAPHICAL AND TEXT CONTENT BASED
FEATURES, OPTICAL MODELS AND USE OF PRIOR INFORMATION VIA

LANGUAGE MODELS OR RANDOMIZED FOREST TREES.

LM No Prior Prior
Features Graph. Graph. + Text Graph. Graph. + Text
HMM 0.41 0.71 0.51 0.73
DNN 0.59 0.73 0.80 0.88

From the results, it can be noted that the incorporation of
text based content features has a very positive impact on all
the models. Furthermore, it is able to mitigate in some manner
the negative impact of not using of prior information has on
HMMs and DNNs for this task.



In the case of HMMs, the use of text content features
provided additional restrictions for decoding. Due to how the
layout was modelled and trained, only I or F layout elements
could be optimally selected respectively in those regions of
the page. This greatly mitigated not using prior information
via the VLM.

In general, the use of prior information greatly improved
results on all models. This can be specially observed in the
models that only used graphical information based features.

VIII. CONCLUSIONS AND FUTURE WORK

We have provided an approach to extract text content
features from an automatically generated Probabilistic Index
Map. We studied how to effectively incorporate these features
into two different models: HMMs and DNNs. The impact
of these features were evaluated empirically in a challenging
region detection task on a historical manuscript collection.
Textual content features have proven to have a very positive
impact on the layout analysis task considered, where graphical-
appearance information is not enough to distinguish between
adjacent text blocks.

Additionally, it has been clearly demonstrated that the use
of prior layout information has an overall positive impact
on performance. This follows the trends that can be seen in
Handwritten Text Recognition with DNNs [22].

For future works the approach here presented may open a
new world of possibilities for DLA. In particular, we would
like to explore more effective ways to incorporate these text
content features in the DNN model. Lastly, we believe that re-
search regarding the addition of prior information to DNNs for
DLA tasks is still in its infancy and great further improvements
are expected when powerful layout prior models, like the VLM
used in the HMM approach, can be effectively integrated with
the already successful DLM models considered in the present
work.
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